

- Over 14 Years in Cybersecurity
- Senior Cybersecurity Analyst / Al Security Analyst at Accenture (AI-SDLC, Governance, Risk analysis)
- Passionate about Al Security/Al-Ransomware
- Co-author of GenAl Red Teaming Methodologies and best practices Top 10 LLM (still on process)
- Life time learner

OWASP and Me

- Been with AI Exchange for 1 year and 3 months
- Co-Lead /Lead Al Security Red Teaming/ Co-Author

Rob van der Veer

Project leader of OWASP AI Exchange / AI Privacy and Security Guide

Chris Ancharski

Co-Lead

Aruneesh Salhotra

Co-Lead

Behnaz Karimi

Co-Lead

OWASP AI Exchange Mission

Be the authoritative source for consensus in Al security.

Foster alignment among various initiatives.

Drive collaboration to advance efforts in Al security.

Not to set standards
but to drive the
development of
standards.

Become a top bookmark for Al security professionals.

Provide a safe, open, and independent platform for finding and sharing insights.

KEY FACTS

- Exchange is CC0 1.0 licensed: **free of copyright** and attribution.
- Volume is **170 pages**
- Accessible and Available at owaspai.org

The AI security community is marked with CC0 1.0 (Creative Common) meaning you can use any part freely, without attribution. If possible, it would be nice if the OWASP AI Exchange is credited and/or linked to, for readers to find more information.

Key Achievements

- Our direct flow of content into ISO/IEC 27090 and standards for the EU AI Act.
 - 70 pages is accepted!
- The liaison relation with CEN/CENELEC.

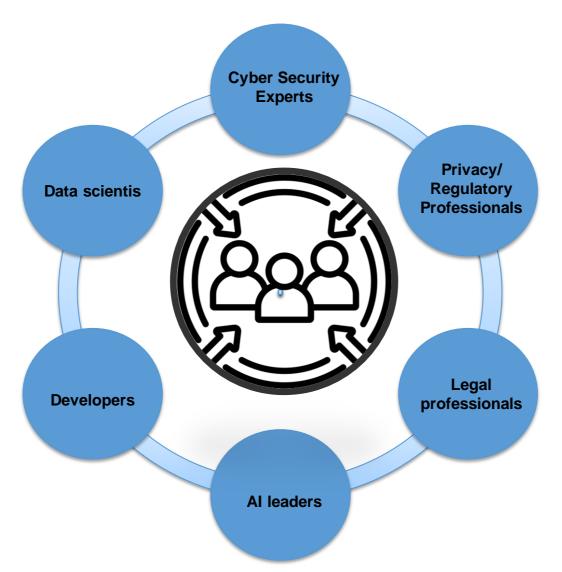
Established an official partnership between OWASP and CEN/CENELEC

Work for security starts from TC21/WG1 to TC21/WG5

- Recognition by standard makers across the globe
- Rob has been elected by the European countries as the coeditor of the official Al Act Security Standard.

Relation to other OWASP or other organization initiatives

The OWASP AI security and privacy guide is the official OWASP project under which the AI Exchange was established. The deliverables consists of the AI Exchange content plus guidance on AI privacy.


The OWASP LLM top 10 provides a list of the most important LLM security issues, plus deliverables that focus on LLM security, such as the LLM AI Security & Governance Checklist.

The OWASP ML top 10 provides a list of the most important machine learning security issues.

OpenCRE.org holds a catalog of common requirements across various security standards inside and outside of OWASP.

Target Audience

Scope & Responsibilities

Develop a comprehensive framework for AI threats, risks, mitigations, and controls.

Create a map integrating AI regulatory and privacy regulations.

Establish a common taxonomy and glossary for Al security.

Provide guidance on testing tools with outcome assessments.

Formulate a shared responsibility model for third-party AI model usage.

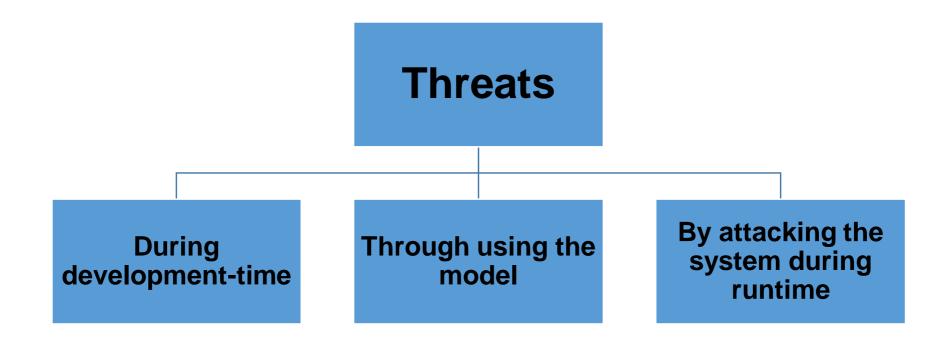
Offer supply chain guidance and an incident response plan.

Collaboration Efforts and Engagement

- We have regular collaboration with
 - o CSA
 - o ISO/IEC
- Liaison with CEN/CENELEC
- We have regular meetings with
 - NIST
 - MITRE
 - o ITU
- We're part of the AISIC.

How to address AI Security?

Imperative to approach AI applications with a <u>clear understanding of potential threats</u> and which of those threats to prioritize for each use case.


Standards and governance help guide this process for individual entities leveraging AI capabilities.

- Implement AI governance
- Extend security and development practices
- Improve regular application and system security through understanding of AI particularities

- Limit the impact of AI by minimizing privileges and adding oversight
- Countermeasures in data science through understanding of model attacks

Threat Model

Impacts

- Confidentiality of train/test data
- 2. Confidentiality of **model Intellectual property** (the *model parameters* or the process and data that led to them)
- 3. Confidentiality of input data
- 4. Integrity of **model behaviour** (the model is not manipulated to behave in an unwanted way)
- **5.** Availability of the model
- Confidentiality, integrity, and availability of non
 Al-specific assets

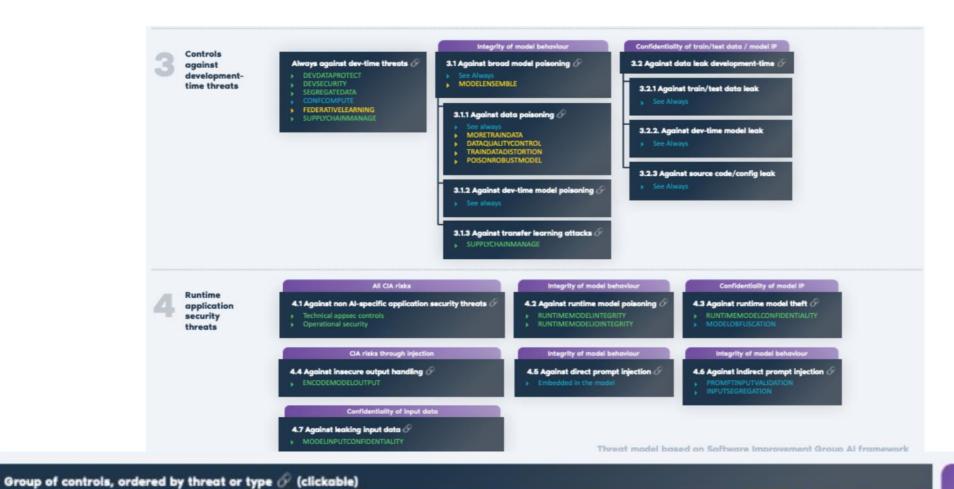
Al Security Matrix

Al-specific?	Lifecycle	Attack surface	Threat	Asset	Impacted	Unwanted result
Source: OWASP AI Exchange at owaspai.org	Runtime	Model use (provide input/ read output) Break into deployed model	Direct prompt injection Indirect prompt injection Evasion (e.g. adversarial examples) Runtime model poisoning (reprogramming)	Model behaviour	Integrity	Manipulated unwanted model behaviour causes wrong decisions leading to business financial loss, misbehaviour going undetected, reputational damage, legal and compliance issues, operational disruption, customer dissatisfaction and churn, reduced empoloyee morale,
	Development	Engineering environment Supply chain	Development time model poisoning Data poisoning of train/finetune data Obtain poisoned foundation model (transfer learning attack)			incorrect strastegic decisions, liability issues, personal damage and safety issues
	Runtime	Model use	Obtain poisoned data to train/finetune Unwanted disclosure in model output	Train data	Confidentiality	Leaking sensitive data can cause costs from fines and legal
	Development	Engineering environment	Model inversion / Membership inference Train data leaks			fees and remediation effort, loss of business through customer churn, reputation damage, loss of competitive advantage in case of trade secrets, operational disruption, impacted business relationships, and employee morale
	Runtime	Model use Break into deployed model	Model theft through by use (input-output harvesting) Runtime model theft	Model intellectual property	Confidentiality	If attackers can copy a model, the investment in the model is devalued caused by loss of competitive advantage, plus a copy can help craft (evasion) attacks
Sou	Development	Engineering environment	Development time model parameter leak			
	Runtime	Model use	System failure by use (model resource depletion)	Model behaviour	Availability	The model is not available, leading to business continuity issues, or safety problems
	Runtime	All IT	Model input leak	Model input data	Confidentiality	Sensitive data in model input leaks. E.g. an LLM prompt with a sensitive question, enhanced with retrieved company secrets
	Runtime	All IT	Model output contains injection attack	Any asset	C, I, A	Injection attack (from model output) causes harm
Generic	Runtime	All IT	Generic runtime security attack	Any asset	C, I, A	Generic runtime security attack causes harm (includes social engineering/phishing)
	Development	All IT	Generic supply chain attack	Any asset	C, I, A	Generic supply chain security attack causes harm (e.g. vulnerability in a component)

Al Security Threats and Controls Navigator

LEGEND:

Standard information security CONTROL (with attention points)


Runtime Data science CONTROL

Development-time Data science CONTROL

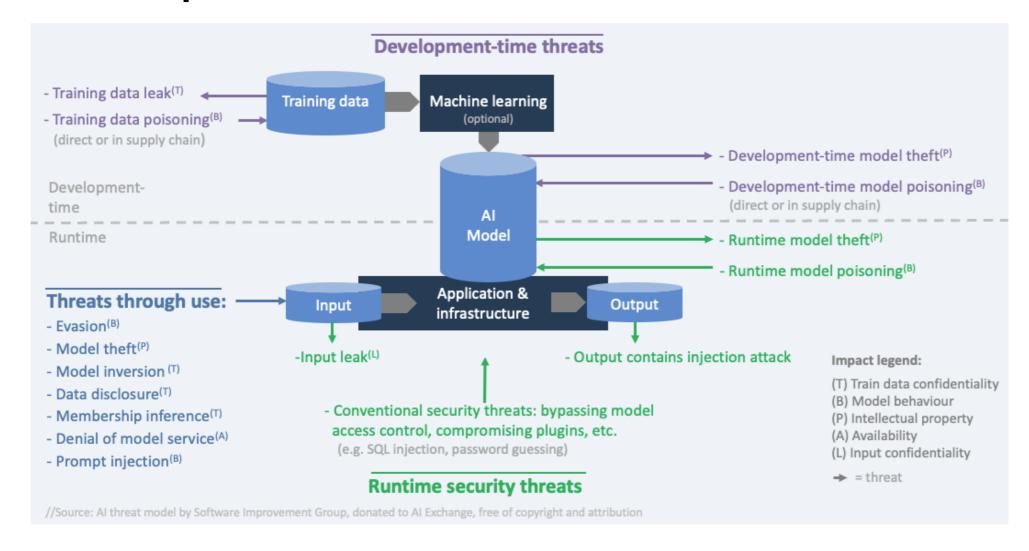
Impact on Confidentiality,
Integrity or Availability

Al Security Threats and Controls Navigator

LEGEND:

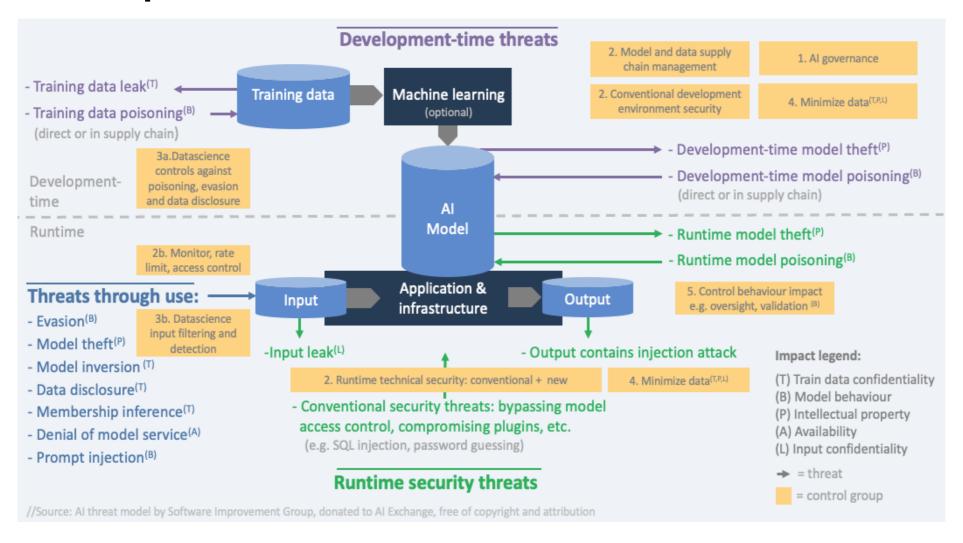
Standard information security CONTROL (with attention points)

Runtime Data science CONTROL


» Development-time Data science CONTROL

• Other CONTROL

Impact on Confidentiality, Integrity or Availability



Threat and Impact

Threat and Impact with Controls

The periodic table of Al security

Found at: https://owaspai.org/goto/periodictable/

The table below, created by the OWASP AI Exchange, shows the various threats to AI and the controls you can use against them – all organized by asset, impact and attack surface, with deeplinks to comprehensive coverage at the <u>AI Exchange website</u> with further references to related standards.

Note that general governance controls apply to all threats.

The periodic table of AI security

Asset & Impact	Attack surface with lifecycle	Threat/Risk category	Controls
		Direct prompt injection	<u>Limit unwanted behavior</u> , <u>Input validation</u> , further controls implemented in the model itself
	Runtime -Model	Indirect prompt injection	Input validation, Input segregation
	use (provide input/ read output)	Evasion (e.g. adversarial examples)	Limit unwanted behavior, Monitor, rate limit, model access control plus: Detect odd input, detect adversarial input, evasion robust model, train adversarial, input distortion, adversarial robust distillation
	Runtime - Break into deployed model	Model poisoning runtime (reprogramming)	Limit unwanted behavior, Runtime model integrity, runtime model input/output integrity
Model behaviour Integrity		Model poisoning development time	Limit unwanted behavior, Development environment security, data
incegnity	Development -		environment security, data

 The various threats to AI and the controls organized by asset, Impact and attack surface

The following threats and controls are highlights from the Al Exchange of which most are not in the LLM top 10.

Governance

Controls		
Al Program		
Security Program		
Secure Development Program		
Development Program		
Check Compliance		
Security Education		

Limit the effects of unwanted behavior

Control		
Oversight		
Least Privilege		
Al Transparency		
Continuous Validation		
Explainability		
Unwanted Bias Testing		

Sensitive Data Limitation

Control	
Data Minimization	
Allowed Data	
Short Retain	
Discrete	

Threats Through Use

Model Behavior Manipulation

Threat and Impact

Evasion

Closed-box evasion

Open-box evasion

Evasion After Data Poisoning

Development-Time Threats

Control	Description
Development Security	Sufficient security of the AI development infrastructure, also taking into account the sensitive information that is typical to AI: training data, test data, model parameters and technical documentation
Segregate Data	Store sensitive development data (training or test data, model parameters, technical documentation) in a separated areas with restricted access.
Confidential Compute	If available and possible, use features of the data science execution environment to hide training data and model parameters from model engineers - even while it is in use.
Federated Learning	Federated learning can be applied when a training set is distributed over different organizations, preventing that the data needs to be collected in a central place - increasing the risk of leaking.
Supply Chain Management	Managing the supply chain to minimize the security risk from externally obtained elements. In regular software engineering these elements are source code or software components (e.g. open source).

Sensitive Data Leak During Development

Threat and Impact	Description
Development-time data leak	Unauthorized access to train or test data through a data leak of the development environment. This has an Impact on the confidentiality breach of sensitive train/test data.
Model theft through development-time model parameter leak	Unauthorized access to model parameters through a data leak of the development environment. This has an impact on the confidentiality breach of model intellectual property.
Source code/configuration leak	Unauthorized access to code or configuration that leads to the model, through a data leak of the development environment. SUch code or configuration is used to preprocess the training/test data and train the model. This has a direct impact on confidentiality breach of model intellectual property.

Leak Sensitive Input Data (*)

Control	Description
Leak Sensitive Input Data	Input data can be sensitive (e.g. GenAl prompts) and can either leak through a failure or through an attack, such as a man-in-the-middle attack.
	Impact: Confidentiality breach of sensitive input data.

Roadmap

Key Deliverables

- Prep 1.0: Review by community and by ourselves -> release 1.0
- Feed the Exchange 1.0 into at least the Al Act and ISO 27090
- Make it easier for readers to recognize their deployment model and select only what is relevant to them
- More illustration of threat models and attack vectors
- Further alignment with Mitre Atlas, NIST, the LLM Top 10,
 ENISA's work, and the AIAPP International Privacy Group

Get Involved and Contribute

Engage with the OWASP AI team through various platforms.

- Connect with us on the <u>OWASP Slack</u> workspace in the #project-ai-community channel. Authors
 are in the closed #project-ai-authors channel.
- Keep up with the latest updates by following us on <u>Twitter</u> and <u>LinkedIn</u>.
- For technical inquiries and suggestions, participate in our <u>GitHub Discussions</u>, or report and track issues on <u>GitHub Issues</u>.

If contributing interests you, check out our <u>Contribution Guidelines</u> or get in touch with our project leaders.

The Exchange is built on expertise from contributors around the world and across all disciplines.

Where can I find more information?

OWASPAI.ORG

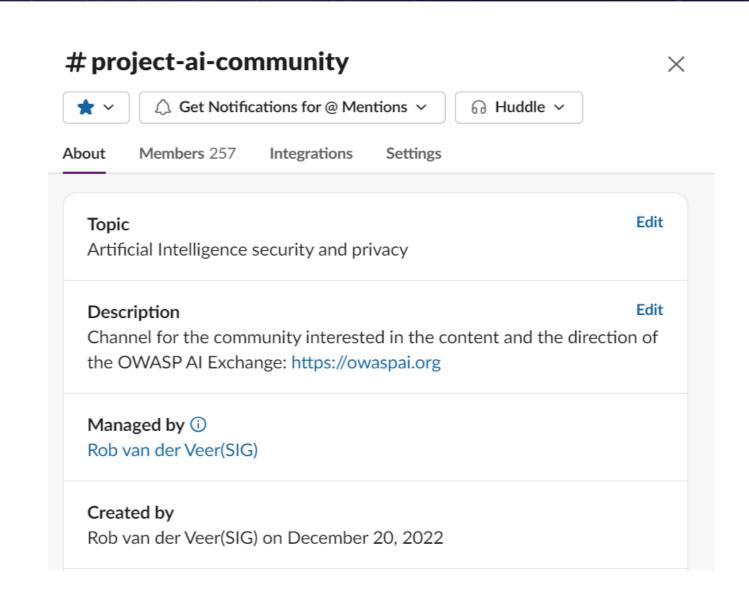
Comprehensive guidance and alignment on how to protect AI against security threats - by professionals, for professionals. Charter **Contribute** Connect with us! Register Navigator Media **Our Content AI Security Overview** 1. General controls 2. Threats through use 3. Development-time threats 4. Runtime application security threats

Participate in Content Development

- Send your suggestion to the project leader.
- Join #project-ai-community in our <u>Slack</u> workspace.
- Discuss with the <u>project leader</u> how to become part of the writing group.
- Propose your <u>concepts</u>, or submit an <u>issue</u>.
- Fork our repo and submit a <u>Pull Request</u> for concrete fixes (e.g. grammar/typos) or content already approved by the core team.
- Showcase your <u>contributions</u>.
- Identify an issue or fix it on a Pull Request.
- Provide your insights in <u>GitHub Discussions</u>.
- Pose your <u>questions</u>.

Follow us on LinkedIn

Stream the bi-weekly meetings



Get Involved as part of the Slack communication channel

(over 350 members)

FAQ

What is our the stance on privacy? https://owaspai.org/docs/ai_security_overview/#how-about-privacy

What is our the stance on copyright?
https://owaspai.org/docs/ai_security_overview/#how-about-copyright

How can I get associated? https://owaspai.org/contribute/

What are all the frameworks that exist around GenAl? https://owaspai.org/goto/references/

How does it complement OWASP LLM Top Ten?
The LLM is about the top 10 issues. **The Exchange is about all issues in all of Al**

Key Reference Links

- Bi-Weekly Meeting
- Contribute
- OWASP Slack Invite
- OWASP LLM top 10
- ENISA ML threats and countermeasures 2021
- MITRE ATLAS framework for AI threats
- NIST threat taxonomy
- ETSI SAI Problem statement Section 6
- Microsoft Al failure modes
- NIST
- NISTIR 8269 A Taxonomy and Terminology of Adversarial Machine Learning
- OWASP ML top 10
- PLOT4ai threat library

- AVID AI Vulnerability database
- OECD Al Incidents Monitor (AIM)
- ENISA AI security standard discussion
- ENISA's multilayer AI security framework
- Alan Turing institute's Al standards hub
- Microsoft/MITRE tooling for ML teams
- Google's Secure Al Framework
- NIST Al Risk Management Framework 1.0
- ETSI GR SAI 002 V 1.1.1 Securing Artificial Intelligence
 (SAI) Data Supply Chain Security
- ISO/IEC 20547-4 Big data security
- IEEE 2813 Big Data Business Security Risk Assessment
- BIML
- Media
- OWASPAI.ORG

